Agent Modeling from a Semiotic Perspective

Cliff Joslyn
Los Alamos National Laboratory

- Review of agent concepts
- Systems and semiotic approach
- Project in modeling socio-technical organizatins

AGENCY

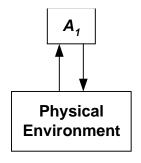
- Classes of existing usages of "agent"
 - AI: "Intelligent" actors
 - Software Engineering: super-objects, super-daemons
 - Distributed Information Systems (DIS): Bob
 - Robots: behavior-based
 - ALife: collective automata (boids)
 - Decision theory: political science, collective choice

Uses

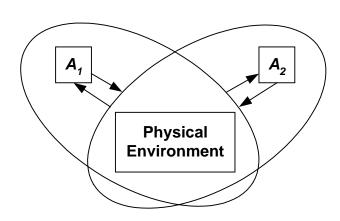
- DIS: simulation, engineering, user interface (helper bots)
- Simulation of complex dynamical systems
- Simulation of natural systems: organisms, humans, ecologies, economies

AGENT CONCEPTS

- Asynchronous, concurrent, parallel
- Interactive, social
- Mobile: code, data, virtual or real space
- Distributed: in real, virtual, or simulated spaces
- Random: statistical trials
- Autonomous:
 - Self-governing, freedom
 - Auto + nomos (law), not auto + nomen (name)


AUTONOMY

- Boundaries: but with respect to what?
 - Spatial, temporal, functional
- Autonomy admits degrees
- Identity, discreteness: tagging
- As a form of closure
 - Physical: structural boundaries
 - Causal: encapsulation
 - Functional: input/output
- Closure with respect to action:
 - Agents as having freedom of decision-making, "free will"
 - At least unpredictability, uncertainty over outcome
 - What/how distinction not sufficient

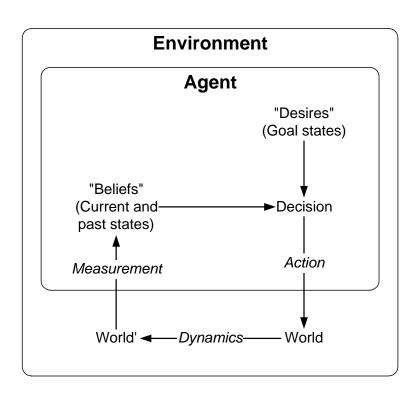

SYSTEMS FOUNDATIONS

- System-environment distinction
 - Emergent behavior from agent-environment interaction
- Environments of agents
 - Absolute: real or simulated phyiscal environment
 - Relative: physical environment plus other agents

Single Agent

Multi-Agent

semagent.ppt, caj


DYNAMIC VS. "SEMIOTIC" AGENTS

- Dynamc: functional, causal autonomy
 - Dynamically coherent with their environments
 - Agents with input, output, and state
 - Dynamic self-organization (attractor behavior)
 - Examples:
 - Physical systems following natural laws
 - Purely instinctual agents following natural propensities
- Semiotic: autonomy of action
 - Dynamically incoherent with environment: also have memory
 - "Dynamical opacity": cannot be modeled as dynamical systems, instead requires modelling as decision-making systems
 - Examples
 - Software agents of sufficient complexity
 - Organisms, people

AGENT SYSTEMS

- Small collections of simple agents
 - Limiting cases: composition of automata, "collective automata", simple robot interactions
 - Possibility of analytical global descriptions
- Large collections of simple agents
 - Traditional ALife approach
 - Limiting case: statistical physics
 - Experimentation, statistical descriptions
- Small collections of complex agents
 - Limiting cases: one or two "intelligent" unmanned vehicles
 - Towards full AI, game theory
- Our goal:
 - Between AI and collective automata
 - Memory-based systems with uncertainty structures

CONTROL STRUCTURE OF "SEMIOTIC AGENTS"

BOUNDED FREEDOM on decision making

- Generalized control relation feedback loop
- Beliefs and desires as relatively simple uncertainty structures, nonpropositional
- Reduce error between perceived and desired state
- Decision among possible actions to accomplish goals
- Consequences of actions reflected through environmental dynamics

TOWARDS "SEMIOTIC CONTROL"

- Representations required of:
 - Measured states of affairs
 - Goal states
 - Possible actions
- System-environment coupling
 - Rich enough environment to avoid pure decision-making
 - Not so rich as to over-constrain decision-making
 - Reflexively involve other agents: not to regress
- Perception-action coupling
- Closed-loop control

SEMIOTICS

- General theory of representations: signs and symbols
- Originally from linguistics and humanities:
 - Text and media analysis
 - Animal call systems
 - Theoretical biology

Concerns:

- Sign typologies
- Digital/analog, symbolic/iconic representations
- Motivation: intrinsic relations of sign to meaning
- Mappings among representational systems, analogy, metaphor, category theory

Results

- Modeling epistemology
- Emphasis on sources of codes

SEMIOTIC "DIMENSIONS"

• Syntax:

- Relations among tokens, production of new tokens
- Usually formal

Semantics:

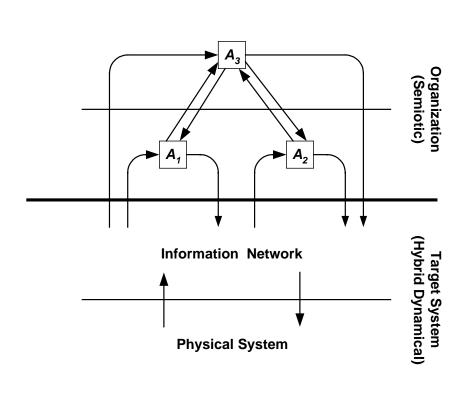
- Signs interpreted by agent as standing-for environment observables
- Measurement, actions

Pragmatics:

- Repercussions of sign interpretations for the agent in the environment
- Purpose: goals, desires
- Ultimate criteria: survival

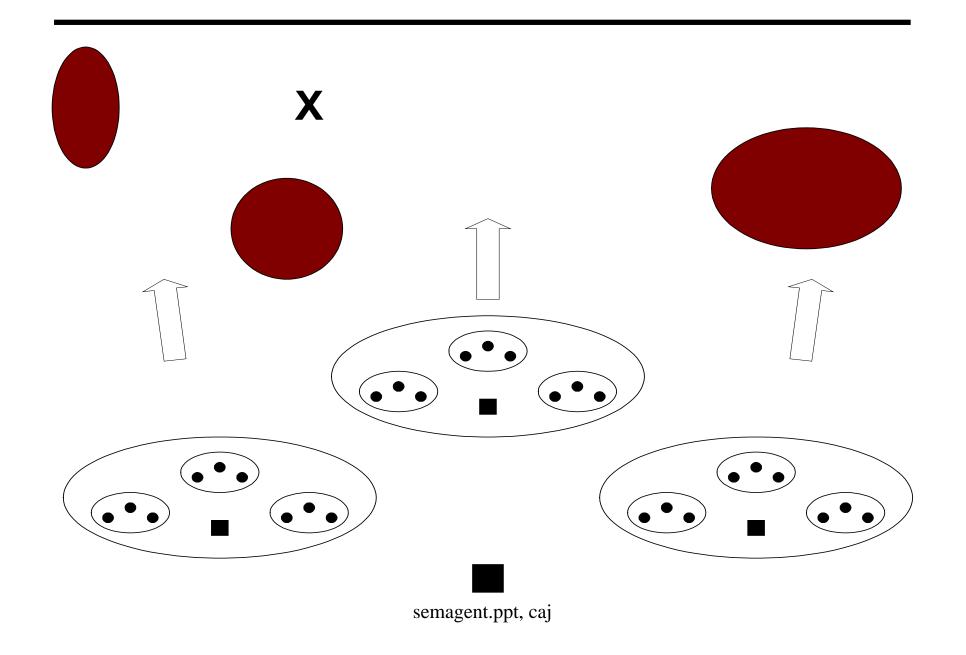
EXAMPLE OF A SIMPLE SEMIOTIC CONTROL SYSTEM

- Organism living at an aqueous thermocline
- Three perceptual states: S={h=too hot,c=too cold,r=just right}
- Three actions: A={u=go up, d=go down, n=do nothing}
- Pragmatics:
 - Organism survival depends on not going up when hot or down when cold
 - Evolution ultimate source of selection
- Semantics:
 - "Too hot" means "go down"
 - "Too cold" means "go up"
- Syntax:
 - Mapping perceptions to actions
 - Only 3 out of 27 possible codes f : S -> A lead to survival


CONSEQUENCES OF THE SEMIOTIC PERSPECTIVE

- Agent-dependence (subjectivity, relativism, constructivism):
 - Interpretation: Signs (symbols) never have meaning in and of themselves, but only as interpreted by an agent
 - Local Knowledge: Agents only have access to world-as-perceived
 - Dependence on Measurable Quantities: Many given from construction of agent
- Internal Models (Endo-models):
 - Anticipatory Control: Predictions made about consequences of various choices
 - Distinguished from global model of environment
- Reflexive modeling:
 - Models of the environment, of other agents
 - Models of other agent's models of the environment and of self
 - To regress?

ARCHITECTURE OF AGENT SIMULATIONS


- Environment: ``Virtual physics" of the simulation
- Action Capabilities: Relative to that environment
- Decision Capabilities: Relative to those possible actions
 - Input/output state systems
 - Evolutionary (external selection) or adaptive (internal selection)
 - Culture as shared knowledge among agents
- Data: Information transmission among agents
- Knowledge: Interpretations of data by agents
- Internal Structures: State, memory, decision function
- Communication: Relative to knowledge, internals
- Control: Decentralized
 - As constraints over decision-making
 - Sources from all of the above

SOCIO-TECHNICAL ORGANIZATIONS

- Target System: environment for organization
- Organization: of semiotic agents
- Functionally defined boundary:
 - Computer agents in organization
 - Deterministic humans in target system
- Decision/coordination structures mediated by net

SCENARIO - SEARCH AND RESCUE

CONSIDERATIONS FOR OUR APPLICATION

- Command Hierarchy:
 - Not flat collective automata
- Data vs. Information:
 - Universal data vs. hierarchical information
 - Intention, attention, scope
- Communication as action?
- External Constraints:
 - Shared knowledge: training, maps
 - Shared goals: common tasks, sub-tasks
 - Information channels and modalities
 - Physical system (breakdowns, terrain)
- Control vs. direction:
 - Control as constraint on decision freedom
 - Possible for lower levels to control upper?